Sequential 1,4-Addition and Ireland–Claisen Rearrangement Promoted by a Manganese–PbCl₂–Me₃SiCl System¹

Kazuhiko Takai,* Takashi Ueda, Hiroya Kaihara, Yoichi Sunami, and Toshio Moriwake

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima, Okayama 700, Japan

Received September 30, 1996

Carbon–carbon bond formation from radicals provides an attractive alternative to methods based on anions, with carbon radicals having different selectivity from the corresponding anionic reagents. As a result, this approach is being increasingly employed in organic synthesis.²

Ketene silyl acetals of allylic esters are the precursors of the Ireland–Claisen rearrangement³ and are usually prepared by deprotonation and trapping with Me₃SiCl. A 1,4-addition to allylic acrylates and silvlation can also be used;^{4,5} however, since the acrylates have four potential electrophilic sites that can result in 1,2-addition (a), 1,4-addition (b), $S_N 2$ (c), and $S_N 2'$ (d) positions (Figure 1), it is necessary to control the regiochemistry. Alkyllithium and magnesium reagents selectively add to the carbonyl carbon in a 1,2-fashion, while dialkylcopper lithium reagents react exclusively at the S_N2' position.⁴ Here, the 1,4-selectivity of alkyl radicals derived by reduction with activated manganese⁶ was utilized in the preparation of ketene silyl acetals. It was found that the successive Ireland-Claisen rearrangement from the intermediate silyl acetals proceeded smoothly at ambient temperature.

Treatment of acrylate **1** with isopropyl iodide and manganese⁷ activated by a catalytic amount of $PbCl_2^8$ and Me_3SiCl^9 in a mixed solvent of DMF and THF at 90 °C for 3 h afforded 1,4-adduct **2** in 47% yield (Table 1, run 1).¹⁰ When an equimolar amount of Me_3SiCl was used with the substrate, the adduct **2** and rearranged

(3) (a) Ireland, R. E.; Mueller, R. H. J. Am. Chem. Soc. 1972, 94, 5897.
 (b) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868.
 (c) Gajewski, J. J.; Emrani, J. J. Am. Chem. Soc. 1984, 106, 5733.
 (d) Ireland, R. E.; Wipf, P.; Armstrong, J. D., III. J. Org. Chem. 1991, 56, 650.
 (e) Ireland, R. E.; Wipf, P.; Xiang, J.-N. J. Org. Chem. 1991, 56, 3572.
 For reviews, see: Ziegler, F. E. Chem. Rev. 1988, 88, 1423.
 Pereira, S.; Srebnik, M. Aldrichim. Acta 1993, 26, 17.

(4) Sequential 1,4-addition and Ireland–Claisen rearrangement was accomplished with Grignard reagents under copper catalysis. Aoki, Y.; Kuwajima, I. *Tetrahedron Lett.* **1990**, *31*, 7457.

(5) Hanamoto, T.; Baba, Y.; Inanaga, J. J. Org. Chem. 1993, 58, 299.
 (6) Takai, K.; Ueda, T.; Ikeda, N.; Moriwake, T. J. Org. Chem. 1996, 61, 7990.

(8) PbCl₂ (99.99% purity) was purchased from Rare Metallic Co., Japan.

Figure 1. Potential electrophilic sites of allyl acrylate.

 Table 1. Effects of Additives on 1,4-Addition and Sequential Rearrangement^a

i-Pi		Mn cat. PbCl2 R THF, DMF	i-Pr		+ ^{i-Pr}	
run	Me ₃ SiCl (equiv)	additive (equiv)	<i>T</i> (°C)	time (h)	yield of 2 ^b (%)	yield of 3 ^b (%)
1	0.1		90	3	47	0
2	1.0		25	0.5	48	43
3	3.0		25	0.5	43	31
4	3.0	DMAP, 3.0	25	0.5	14	81
5	3.0	NMI, 3.0	25	0.5	7	92

^{*a*} Reaction was conducted on a 1.0 mmol scale. Three mol of isopropyl iodide, 6.0 mol of manganese, and 0.06 mol of PbCl₂ were used per mol of acrylate **1**. $R = n \cdot C_5 H_{11}$. ^{*b*} Isolated yields.

product **3** were produced in 48% and 43% yields, respectively, at 25 °C for 30 min (Table 1, run 2). This result suggests that the rearrangement does not proceed from a manganese enolate anion¹¹ but, rather, occurs after trapping to its silyl acetal. It is known that 4-(dimethylamino)pyridine (DMAP) and *N*-methylimidazole (NMI) accelerate the silylation step,¹² and thus, when added, the sequential Claisen rearrangement proceeded smoothly, and the acid **3** was obtained in excellent yields (Table 1, runs 4 and 5). The double bond produced was proven to have *E* geometry as expected from the Ireland–Claisen rearrangement.¹³

Primary, secondary, and tertiary alkyl iodides can be used for the sequential 1,4-addition and Ireland–Claisen rearrangement, the results of which are shown in Table 2.¹⁷ Because the reduction of a primary iodide proceeds slower than that of a secondary iodide, in this case, the reaction was conducted with 5 mol % of PbCl₂ and heated at 40 °C (Table 2, run 7). Although 1,4-addition occurred smoothly with *tert*-butyl iodide in almost quantitative yield, the successive rearrangement proceeded slowly,

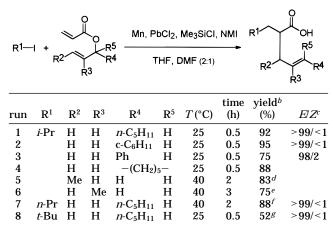
(14) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.

(15) Daumas, M.; Vo-Quang, Y.; Vo-Quang, L.; Le Goffic, F. Synthesis 1989, 64.

(16) Bestmann, H. J.; Stransky, W.; Vostrowsky, O. Chem. Ber. 1976, 109, 1694.

⁽¹⁾ Dedicated to Clayton H. Heathcock on the occasion of his 60th birthday.

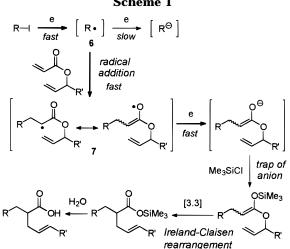
^{(2) (}a) Beckwith, A. L. J. Tetrahedron 1981, 37, 3073. (b) Stork, G. Current Trends in Organic Synthesis; Nozaki, H., Ed.; Pergamon Press: Oxford, 1983; p 359. (c) Ueno, Y. Synth. Org. Chem. Jpn. 1984, 42, 1121. (d) Giese, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 553. (e) Curran, D. P. Synthesis 1988, 417, 489. Curran, D. P. In Comprehensive Organic Synthesis, Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 715.

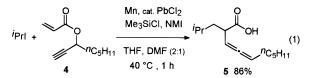

⁽⁷⁾ Manganese powder was purchased from two sources: Rare Metallic Co. (99% purity, -80 mesh) and Kojundo Chemical Laboratory (99.9% purity, -50 mesh).

⁽⁹⁾ For activation of metals with Me₃SiCl, see: Jhingan, A. K.; Maier, W. F. *J. Org. Chem.* **1987**, *52*, 1161. Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. *J. Org. Chem.* **1988**, *53*, 2390. Takai, K.; Kakiuchi, T.; Utimoto, K. *J. Org. Chem.* **1994**, *59*, 2671. Fürstner, A.; Hupperts, A. *J. Am. Chem. Soc.* **1995**, *117*, 4468. Lautens, M.; Ren, Y. *J. Org. Chem.* **1996**, *61*, 2210.

⁽¹⁰⁾ Alkylmanganese compounds add to α,β -unsaturated carbonyl compounds in a 1,4-fashion with the assistance of a catalytic amount of CuCl. Cahiez, G.; Alami, M. *Tetrahedron Lett.* **1989**, *30*, 3541, 7365. For reactions of alkylmanganese compounds, see: Cahiez, G.; Figadere, B. *Tetrahedron Lett.* **1986**, *27*, 4445. Cahiez, G.; Laboue, B. *Tetrahedron Lett.* **1989**, *30*, 7369. Kim, S.-H. K.; Hanson, M. V.; Rieke, R. D. *Tetrahedron Lett.* **1996**, *37*, 2197.

⁽¹¹⁾ For Ireland–Claisen rearrangement via metal enolate of allylic esters, see: (a) Zn: Baldwin, J. E.; Walker, J. A. *J. Chem. Soc., Chem. Commun.* **1973**, 117. (b) B: Corey, E. J.; Lee, D.-H. *J. Am. Chem. Soc.* **1991**, *113*, 4026.


⁽¹²⁾ Bassindale, A. R.; Stout, T. *Tetrahedron Lett.* **1985**, *26*, 3403. (13) Authentic samples of γ , δ -unsaturated esters with *E* geometry were prepared by the following route: (1) Inanaga's Claisen rearrangement;⁵ (2) esterification; (3) 1,4-addition. For comparison of the geometry of the double bond, (*Z*)-methyl esters were prepared: (1) dihydroxylation of (*E*)-methyl esters, OsO₄, NMO/acetone, H₂O, 25 °C, 5 h, 84–75%;¹⁴ (2) NaIO₄, SiO₂, CH₂Cl₂, 25 °C, 15 h, 69–55%;¹⁵ Ph₃P(CH₂)₅CH₃+Br⁻, NaN(SiMe₃)₂, -78 to +25 °C, 70–35%.¹⁶ In the case of the Wittig olefination with benzylidenetripenylphosphorane (for Table 2, run 3), a mixture of olefins (*Z*/*E* = 26/74) was obtained.


^a Reaction was conducted on a 1.0 mmol scale. See typical procedure. ^b Isolated yields. ^c Determined by ¹H NMR and/or ¹³C NMR analysis of the corresponding methyl ester. d Anti/syn = 48/52. e 1,4-Adduct was obtained in 20% yield. f 5 mol % of PbCl2 was used. g 1,4-Adduct was produced in 42% yield. When the mixture was treated at 40 °C for 3 h, the rearranged carboxylic acid was produced in 53% yield along with the 1,4-adduct in 39% yield.

probably due to steric hindrance around the newly formed carbon-carbon bond (Table 2, run 8). Heating the mixture at 40 °C, however, did not improve the yield of rearranged carboxylic acid. In contrast to the reported Ireland-Claisen rearrangement,^{3b} a substituent at R² did not accelerate the rearrangement. For example, the reaction at 25 °C for 1 h produced the rearranged carboxylic acid and 1,4-adduct in 30% and 47% yield, respectively, while the reaction at 40 °C for 3 h produced the acid in 83% yield (Table 2, run 5). The product in run 5 was obtained as an anti/syn mixture of diastereomers in a 48/52 ratio.^{3b} The low diastereoselectivity stems from the fact that both *E* and *Z* ketene silvl acetals are produced in an almost 1/1 ratio under the conditions.18

Treatment of propargylic acrylate 4 with isopropyl iodide and the manganese system at 40 °C for 1 h produced the corresponding allenic carboxylic acid 5 in 86% yield as a 1/1 mixture of diastereomers (eq 1).

A plausible mechanism for this sequential reaction is shown in Scheme 1. The reduction of an iodoalkane with the manganese-PbCl₂-Me₃SiCl system produces the corresponding alkyl radical 6, which has a sufficient lifetime for intermolecular addition to an acrylate, even under the reduction conditions. In contrast, reduction of the adduct radical 7 takes place smoothly to give an ester enolate that is trapped with Me₃SiCl. The Ireland-Claisen rearrangement and hydrolysis affords an (E)- γ , δ unsaturated acid. This sequential reaction is made possible by the moderate manganese reducing system discriminating between the two radicals 6 and 7.6

Acknowledgment. Financial support from the Ciba-Geigy Foundation (Japan) for the Promotion of Science and the Ministry of Education, Science and Culture of Japan is gratefully acknowledged.

Supporting Information Available: Characterization data for all new compounds (4 pages).

JO9618482

⁽¹⁷⁾ Typical Procedure for 3. Me₃SiCl (0.38 mL, 3.0 mmol) and N-methylimidazole (NMI, 0.25 g, 3.0 mmol) were added at 25 °C to a mixture of manganese powder (0.33 g, 6.0 mmol) and PbCl₂ (17 mg, 0.060 mmol) in THF (4 mL) under an argon atmosphere, and the 0.060 mmol) in 1 Hr (4 mL) under an argon atmosphere, and the mixture was stirred at 25 °C for 30 min. To the mixture was added a solution of an allylic acrylate 1 (0.18 g, 1.0 mmol) in DMF (1 mL) at 25 °C. A solution of isopropyl iodide (0.51 g, 3.0 mmol) in DMF (1 mL) was then added to the mixture at 25 °C, producing an exothermic reaction (ca. 35 °C). After the resulting mixture was stirred at 25 °C for 30 min, saturated NH₄Cl solution (10 mL) was added, and the mixture was filtered with Celite and washed well with ether (3 \times 10 mL). Organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. Purification of the crude product by column chromatography on silica gel (hexane-ethyl acetate, 30:1) gave the γ , δ -unsaturated acid **3** (0.21 g, 0.92 mmol) in 92% yield.

⁽¹⁸⁾ Trapping of the enolate derived from 2-phenylpropyl acrylate and isopropyl iodide with manganese, PbCl₂, and Me₃SiCl produced E and Z ketene silyl acetals in a 44/56 ratio.